skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roberts, M S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Green Bank 820 MHz pulsar survey covers ≃173 deg2in the Cygnus X region of the Galaxy, centered onl= 84.°5 andb= 1.°5. Significant star formation is present in this region, and lines of sight pass through three arms of the Galaxy (Orion–Cygnus, Perseus, and an outer arm). Using the Green Bank Telescope, we recorded 200 MHz of bandwidth for 4.5 minutes at 81.92μs resolution for each of 3457 observed survey pointings during 2016 and 2017, covering about two-thirds of the total area. We searched these data for pulsars and report the discovery of six new pulsars—PSRs J2016+3820, J2016+4231, J2019+3810, J2035+3538, J2035+3655, and J2041+4551—and the codiscovery of PSR J2057+4701. PSR J2035+3655 is in a short (4.5 hr) binary orbit; we report the full binary solution and weakly constrain the mass of the pulsar via a marginal (2σ) detection of the Shapiro delay. We also searched the survey data for known pulsars to estimate the survey’s sensitivity and measured 820 MHz pulse widths and flux density for 20 detected sources. For sources that were also detected in the Green Bank North Celestial Cap survey at 350 MHz, we measure scattering parameters and compare to expectations for the region. With these results, we revisit the population estimates that motivated this survey and consider the impact of the survey’s yield on their underlying models. We note an apparent underestimate in dispersion measure predictions from typical Galactic electron density models in the survey region, and discuss future observation strategies. 
    more » « less
  2. Abstract Reliable neutron star mass measurements are key to determining the equation of state of cold nuclear matter, but such measurements are rare. Black widows and redbacks are compact binaries consisting of millisecond pulsars and semi-degenerate companion stars. Spectroscopy of the optically bright companions can determine their radial velocities, providing inclination-dependent pulsar mass estimates. Although inclinations can be inferred from subtle features in optical light curves, such estimates may be systematically biased due to incomplete heating models and poorly understood variability. Using data from the Fermi Large Area Telescope, we have searched for gamma-ray eclipses from 49 spider systems, discovering significant eclipses in 7 systems, including the prototypical black widow PSR B1957+20. Gamma-ray eclipses require direct occultation of the pulsar by the companion, and so the detection, or significant exclusion, of a gamma-ray eclipse strictly limits the binary inclination angle, providing new robust, model-independent pulsar mass constraints. For PSR B1957+20, the eclipse implies a much lighter pulsar (1.81 ± 0.07 solar masses) than inferred from optical light curve modelling. 
    more » « less
  3. Abstract The Green Bank North Celestial Cap survey is a 350 MHz all-sky survey for pulsars and fast radio transients using the Robert C. Byrd Green Bank Telescope. To date, the survey has discovered over 190 pulsars, including 33 millisecond pulsars and 24 rotating radio transients. Several exotic pulsars have been discovered in the survey, including PSR J1759+5036, a binary pulsar with a 176 ms spin period in an orbit with a period of 2.04 days, an eccentricity of 0.3, and a projected semi-major axis of 6.8 light seconds. Using seven years of timing data, we are able to measure one post–Keplerian parameter, advance of periastron, which has allowed us to constrain the total system mass to 2.62 ± 0.03 M ⊙ . This constraint, along with the spin period and orbital parameters, suggests that this is a double neutron star system, although we cannot entirely rule out a pulsar-white dwarf binary. This pulsar is only detectable in roughly 45% of observations, most likely due to scintillation. However, additional observations are required to determine whether there may be other contributing effects. 
    more » « less
  4. null (Ed.)